Ring RING A ring is algebraic structure (R, '+' , '.') that consists of a set equipped with two binary operations, usually called addition and multiplication. The definition of a ring includes the following properties: Additive Closure: The set R is closed under addition, meaning that if you add any two elements from the set R, the result is also in the set R. Additive Associativity: Addition is an associative, meaning that for any elements a, b, and c in the set R s.t. (a+b)+c=a+(b+c) Additive Inverse: For every element a in the set R, there exists an additive inverse (usually denoted as -a ) in the set R such that a+(-a)=0 and (-a)+a=0. Additive Identity: There exists an additive identity element (usually denoted as 0) in the set R, such that for any element a in the set R, a+0=a and 0+a=a. Commutative: The commutative law for addition states that for any elements a and b in a set R s.t....
NNormal Subgroup Normal Subgroup Let G be a group, and H be a subgroup of G. Then subgroup H is set to be normal subgroup of G if for any element g in & h in H s.t. ghg−1 Є H Simple Group A simple group is a type of group in abstract algebra that has no non-trivial normal subgroups. In other words, a group G is simple if the only normal subgroups of G are the trivial subgroup {e} and the whole group G itself. Hamiltonian Group A non-abelian group in which each sub-Group is normal. Conjugate Element In group theory, given a group G and elements a , b in G the element b is said to be conjugate to "a" if there exists an element g in G such that, b= gag −1 The process of finding such a g is called conjugation. Normalizer of an element The normalizer of an element a in a group G, denoted as N(a), is defined as the set of all elements in G that, which commutes wit...